## Personalised Medicine in Cardiovascular Disease

University of London

## Declaration of interest

Consultancies/Ad Board:

- MyoKardia (BMS)
- Pfizer
- Sanofi-Genzyme
- DinaQor
- Astra Zeneca
- Sarepta
- Freeline
- Biomarin
- Cardior
- Novo Nordisk



## What is personalised medicine?

"Stratified medicine is based on identifying subgroups of patients with distinct mechanisms of disease, or particular responses to treatments. This allows us to identify and develop treatments that are effective for particular groups of patients. Ultimately stratified medicine will ensure that the right patient gets the right treatment at the right time."
http://www.mrc.ac.uk/research/initiatives/stratified-medicine/

Technologies for greater molecular level characterisation
Technologies for personalised therapeutic interventions
Technologies for personalised disease and health monitoring Underpinning and enabling technologies

## Towards precision medicine in heart failure

Chad S. Weldy (D) ${ }^{1,2}$ and Euan A. Ashley $\mathbb{D}^{1,2 凶}$


Weldy CS, Ashley EA. Towards precision medicine in heart failure. Nat Rev Cardiol. 2021 Nov;18(11):745-762.

## Towards precision medicine in heart failure

Chad S. Weldy © ${ }^{1,2}$ and Euan A. Ashley ${ }^{1,2 \boxtimes}$


Weldy CS, Ashley EA. Towards precision medicine in heart failure. Nat Rev Cardiol. 2021 Nov;18(11):745-762.


## Non-invasive imaging as the cornerstone of cardiovascular precision medicine

Stephan Achenbach © ${ }^{10}{ }^{\mathbf{1}}$, Friedrich Fuchs ${ }^{2}$, Alexandra Goncalves ${ }^{3,4}$, Claudia Kaiser-Albers ${ }^{5}$, Ziad A. Ali ${ }^{6}$, Frank M. Bengel ${ }^{7}$, Stefanie Dimmeler $\mathbb{1}^{8}{ }^{8}$, Zahi A. Fayad © ${ }^{9}$, Alexandre Mebazaa ${ }^{10}$, Benjamin Meder ${ }^{11}$, Jagat Narula ${ }^{12}$, Amil Shah ${ }^{13}$, Sanjay Sharma © ${ }^{14}$, Jens-Uwe Voigt ${ }^{15}$, and Sven Plein © ${ }^{16}$



Data analysis strategies (artificial intelligence, machine learning)


Precision medicine outcomes

- Precision interventional strategies
- Precision medication selection
- Prediction and prognostication
- Lifestyle and other health changes
- Optimized recruitment for clinical trials


## Non-invasive imaging as the cornerstone of

 cardiovascular precision medicineStephan Achenbach © ${ }^{\mathbf{1} *}$, Friedrich Fuchs ${ }^{2}$, Alexandra Goncalves ${ }^{3,4}$, Claudia Kaiser-Albers ${ }^{5}$, Ziad A. Ali ${ }^{6}$, Frank M. Bengel ${ }^{7}$, Stefanie Dimmeler $\mathbb{0}^{8}$, Zahi A. Fayad © ${ }^{9}$, Alexandre Mebazaa ${ }^{10}$, Benjamin Meder ${ }^{11}$, Jagat Narula ${ }^{12}$,
Amil Shah ${ }^{13}$, Sanjay Sharma © ${ }^{14}$, Jens-Uwe Voigt ${ }^{15}$, and Sven Plein © ${ }^{16}$


[^0]
## EDITORIAL

## nature <br> medicine

## Taking personalized medicine to heart

Tailoring treatment to the individual patient has revolutionized cancer therapy, but personalized medicine has yet to make much headway in the treatment of cardiovascular disease. With emerging insight into disease mechanisms and new treatment options, the time is now ripe for the cardiovascular field to adopt a more personalized approach to therapy.

Delivering precision oncology to patients with

## cancer

Joaquin Mateo © ${ }^{1,18}$, Lotte Steuten ${ }^{2,3,18}$, Philippe Aftimos ${ }^{4}$, Fabrice André ${ }^{\circ}{ }^{5}$, Mark Davies ${ }^{6}$,
Elena Garralda', Jan Geissler ${ }^{7}$, Don Husereau $\odot^{8}$, Iciar Martinez-Lopez $\oplus^{9}$, Nicola Normanno ${ }^{10}$,
Jorge S. Reis-Filho ${ }^{(11}$, Stephen Stefani ${ }^{12}$, David M. Thomas ${ }^{(13}$, C. Benedikt Westphalen ${ }^{14,15,19}$ and Emile Voest ${ }^{16,77,19}$ 区a



## Cardiomyopathies?

## Cardiomyopathy: Definition

> "A myocardial disorder in which the heart muscle is structurally and functionally abnormal, in the absence of coronary artery disease, hypertension, valvular disease and congenital heart disease sufficient to cause the observed myocardial abnormality."

## Classification of Cardiomyopathies



Davies M. Heart 2000;83:469-474

## Contemporary and Future Approaches

## to Precision Medicine in

## Inherited Cardiomyopathies

- 

Diane Fatkin, MD, ${ }^{\text {a,b,c }}$ Hugh Calkins, MD, ${ }^{\text {d }}$ Perry Elliott, MBBS, MD, ${ }^{\text {e,f }}$ Cynthia A. James, PHD, CGC, Stacey Peters, MBBS, ${ }^{\text {g.h }}$ Jason C. Kovacic, MBBS, PHD ${ }^{\text {a,b,c, }}$


FIGURE 1 Location of Cardiomyopathy Disease Genes


## Minor hypertrophic cardiomyopathy

 genes, major insights into the genetics of cardiomyopathiesRoddy Walsh ${ }^{1 \otimes}{ }^{\prime \otimes}$, Joost A. Offerhaus ${ }^{1}$, Rafik Tadros ${ }^{2}$ and Connie R. Bezzina ${ }^{1}$
a

| HCM <br> Case-control GWAS |  |  |
| :--- | :---: | :--- |
| Study | Cases | Controls |
| Tadros et al. | 1,733 | 5,521 |
| Harper et al. | 2,780 | 47,486 |

UK Biobank
LV traits on up to 36,041 individuals

|  | EDV | ESV | EF | WT | Mass | Conc | Strain |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HCM | NS | - | + | + | + | + | + |
| DCM | + | + | - | NS | NS | - | - |

b


## Obesity and its Association to Phenotype and Clinical Course in Hypertrophic Cardiomyopathy

Iacopo Olivotto, MD,* Barry J. Maron, MD, $\dagger$ Benedetta Tomberli, MD, ${ }^{*}$ Evan Appelbaum, MD, $\ddagger \S$
Carol Salton, AB, $\ddagger \S$ Tammy S. Haas, RN, $\dagger$ C. Michael Gibson, MD, $\ddagger \S$ Stefano Nistri, MD,*
Eleonora Servettini, MD, ${ }^{*}$ Raymond H. Chan, MD, $\S$ James E. Udelson, MD, || John R. Lesser, MD, $\dagger$
Franco Cecchi, MD,* Warren J. Manning, MD, $\ddagger \S$ Martin S. Maron, MD||



J Am Coll Cardiol 2013;62:449-57)

Obese HCM phenotype
$30-40 \%$ of all patients


If NYHA class 23.25, 27.28.32
§ Exercise capacity and tolerance ${ }^{25,27}$
U Incidence of heart failure and atrial fibrillation ${ }^{23,32}$
If Mortality in patients with DM-II ${ }^{28}$


J Am Heart Assoc. 2020;9:e018641.

## Contemporary and Future Approaches

## to Precision Medicine in

## FIGURE 6 Myocardial Phenotype "Wheel of Fortune"

## Inherited Cardiomyopathies

## JACC Focus Seminar 3/5

Diane Fatkin, MD, ${ }^{\text {a,b,c }}$ Hugh Calkins, MD, ${ }^{\mathrm{d}}$ Perry Elliott, MBBS, MD, ${ }^{\text {e,f }}$ Cynthia A. James, PHD, CGC, ${ }^{\text {d }}$ Stacey Peters, MBBS, ${ }^{\text {g.h }}$ Jason C. Kovacic, MBBS, PHD ${ }^{\text {a,b,c, }}$

## FIGURE 5 Factors That Contribute to Cardiomyopathy Phenotypes

## INDIVIDUAL GENETIC BACKGROUND:



> Comorbidities, acquired factors, and lifestyle


Cardiomyopathy phenotypes ( $P$ ) such as left ventricular ejection fraction or wall thickness are continuous variables (outer colored circle). Inner circles represent variable effects (gradations of color) of background rare variants (Rv), common variants (Cv), comorbidities (Co), lifestyle factors (L), and ethnicity (Eth). For any given value of $P$ (arrow), the relative contributions of a primary gene mutation and modifying factors will differ in individual patients.


## What has all this to do with me?

1. Electrocardiography
2. Cardiac catheterisation
3. Cardiovascular surgery
4. Coronary angiography
5. Invasive cardiology
6. The Coronary Care Unit
7. Cardiovascular Drugs
8. Preventative Cardiology
9. Echocardiography
10. Pacemakers \& ICDs

## European Society of Cardiology: cardiovascular disease statistics 2021

European Heart Journal (2022) 43, 716-799 heart failure of the European Society of Cardiology (ESC)

## "The main terminology used to describe HF is historical and is based on measurement of the LVEF"

| Type of HF |  | HFrEF | HFmrEF | HFpEF |
| :---: | :--- | :--- | :--- | :--- |
|  | $\mathbf{I}$ | Symptoms $\pm$ Signs $s^{2}$ | Symptoms $\pm$ Signs |  |

## 2021 ESC Guidelines for the diagnosis and

## treatment of acute and chronic heart failure



European Heart Journal (2021) 42, 3599-3726

## Contemporary survival trends and aetiological

 characterization in non-ischaemicdilated cardiomyopathy
Marco Merlo ${ }^{1 * \dagger}$, Antonio Cannatà ${ }^{1,2 \dagger}$, Carola Pio Loco ${ }^{1}$, Davide Stolfo ${ }^{1}$, Giulia Barbati³, Jessica Artico ${ }^{1}$, Piero Gentile ${ }^{1}$, Valerio De Paris ${ }^{1}$, Federica Ramani ${ }^{1}$, Massimo Zecchin ${ }^{1}$, Marta Gigli¹, Bruno Pinamonti ${ }^{1}$, Renata Korcova ${ }^{1}$ Massimo Zecchin ${ }^{1}$, Marta Gigli ${ }^{1}$, Bruno Pinamonti ${ }^{1}$, Renata Korcova ${ }^{1}$, ${ }^{\mathbf{2}}$, ${ }^{\text {Andrea Di Lenarda }}{ }^{4}$, Mauro Giacca ${ }^{2}$, Luisa Mestroni ${ }^{5}$, Paolo G. Camici, and Gianfranco Sinagra ${ }^{1}$


European Journal of Heart Failure (2020)22,1111-1121

## What has all this to do with me?

NOT MUCH


National causes of death in females and males in ESC member countries (latest year)


Proportions of deaths caused by CVD in ESC member countries stratified by sex and national income status (latest year)

## TALES FROM THE CLINIC (1)

## Clinical History

## 42y, male

- AF 2007
- Incidental finding
- DCCV 2008
- Medication: Aspirin 75mg
- Holter: NSVT x 5 beats
- CMR: Mild impairment of LV function. Biatrial dilatation with LA diameter of 43 mm .


## Clinical History

- Family History
- Father:
- AF
- PPM - CHB
- CRT-P 2011
- RIP aged 63
- Paternal grandfather:
- AF and PPM
- RIP aged 64 ?cause



## 24 hour Holter



## Echocardiogram



CMR


(M) 2016 ESC Guidelines for the diagnosis and
treatment of acute and chronic heart failure
The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)

Developed with the special contribution of the Heart Failure Association (HFA) of the ESC

## "The main terminology used to describe HF is historical and is based on measurement of the LVEF"

| Type of HF |  | HFrEF | HFmrEF | HFpEF |
| :---: | :--- | :--- | :--- | :--- |
|  | $\mathbf{I}$ | Symptoms $\pm$ Signs $s^{2}$ | Symptoms $\pm$ Signs |  |

## The Phenotype

- Young
- Family History of AF, PM
- NSVT
- Mild LV impairment
-WHY?


## Diagnosis

- Genetic Testing
- Lamin A/C : c.1489-1 G>A


## Risk Factors for Malignant Ventricular Arrhythmias in Lamin A/C Mutation Carriers

A European Cohort Study



NSVT, LVEF 45\%, male


+ non-missense mutations (ins-del/truncating or mutations affecting splicing)


## TALES FROM THE CLINIC (2)

## Background

- 24 year old male
- 2006: Incidental diagnosis of junctional arrhythmias, supra- and ventricular multifocal ectopics
- Intermittently impaired LV/RV systolic function
- 2008: EPS and RV biopsy
- Flecainide challenge negative
- Normal coronaries
- No ablation as too many foci
- EMB: "The findings are in keeping with dilated cardiomyopathy but there are no specific features to indicate its cause.


## 2017-18

- Carvedilol 25 mg BD, Ramipril 2.5 mg OD
- No symptoms except some occasional palpitations
- No syncope
- No SOB
- Very fit, into different sports, regular gym-attendance
- Works as accountant






## Holter

- 47000 VES, $34 \%$ of total
- NSVTs, polymorphic and monomorphic



## Genetics

| Gene | Variant | Result | Pathogenicity | Population frequency | Number of references |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SCN5A | $\begin{aligned} & \text { NP_932173.1:p.Arg222Gln } \\ & \text { NM_198056.2:c.665G>A } \\ & \text { NC_000003.11:g.38655272C>T } \end{aligned}$ | Heterozygosis | Pathogenic or disease-causing (+++) | Mutation (not found in controls) | 28 |
| RBM20 | $\begin{aligned} & \text { NP_001127835.2:p.Ala387Val } \\ & \text { NM_001134363.2:c.1160C>T } \\ & \text { NC_000010.10:g.112541527C>T } \end{aligned}$ | Heterozygosis | Unknown clinical significance (?) | Mutation (not found in controls) | 0 |

## Clinical interpretation

The SCN5A mutation has been documented in several families affected with dilated cardiomyopathy and frequent ventricular arrhythmias (conduction disorders and supraventricular arrhythmias are also described). Sudden death and severe systolic dysfunction has been reported. Almost all affected were diagnosed before the age of 30 . This variant may be used for predictive purposes, and we recommend its inclusion in the familial screening.

The RBM20 mutation is classified as of unknown clinical significance. The expected phenotype for pathogenic variants in this gene is dilated cardiomyopathy associated with arrhythmias; however, the mutation identified in this study is located outside the pathogenic regions (hotspots) in the gene. The use of this variant as part of the familial screening could be considered for research purposes only.

## Functional study / Animal model

This mutation has been functionally characterized by several independent groups (obtaining similar results). These electrophysiological studies showed that this mutation leads to a gain of function. An activation curve shifted to negative potentials (earlier activation), with more accelerated kinetics, was observed. This produced an increase in the current window (typical of long QT). Interestingly, channel inactivation also occurred early, which is a mechanism that would cause a loss-of-function of the channel (typical of Brugada). An in silico model determined that the ectopic activity in the Purkinje system would occur or by an incomplete repolarization of these cells, and the disappearance of arrhythmias with quinidine or exercise was also observed.

## Treatment

- January 2018: Quinidine
- March 2018: EF 62\%; 3 VE in 24 hours


## EDITORIAL

## nature <br> medicine

## Taking personalized medicine to heart

Tailoring treatment to the individual patient has revolutionized cancer therapy, but personalized medicine has yet to make much headway in the treatment of cardiovascular disease. With emerging insight into disease mechanisms and new treatment options, the time is now ripe for the cardiovascular field to adopt a more personalized approach to therapy.


46 If you wish to persaude me you must think my thoughts, feel my feelings and speak my words."

Cicero, Roman Statesman

(1) Is this stuff real?

## Genetics and genotype-phenotype correlations

## in Finnish patients with dilated cardiomyopathy

Oyediran Akinrinade ${ }^{1,2 \dagger}$, Laura Ollila ${ }^{3 \dagger}$, Sanna Vattulainen ${ }^{1}$, Jonna Tallila ${ }^{4}$,
Massimiliano Gentile ${ }^{4}$, Pertteli Salmenperä ${ }^{4}$, Hannele Koillinen ${ }^{5}$, Maija Kaartinen ${ }^{3}$, Markku S. Nieminen ${ }^{3}$, Samuel Myllykangas ${ }^{\mathbf{2}, 4 \ddagger}$, Tero-Pekka Alastalo ${ }^{1,4 \ddagger}$, Juha W. Koskenvuo ${ }^{4,6,7 \ddagger *}$, and Tiina Heliö ${ }^{3 \ddagger}$


## JAMA Cardiology I Original Investigation

## Assessing the Role of Rare Genetic Variation in Patients With Heart Failure

Gundula Povysil, MD, PhD; Olympe Chazara, PhD; Keren J. Carss, PhD; Sri V. V. Deevi, PhD; Quanli Wang, MSc; Javier Armisen, PhD; Dirk S. Paul, PhD; Christopher B. Granger, MD; John Kjekshus, MD, PhD; Vimla Aggarwal, MBBS; Carolina Haefliger, MD; David B. Goldstein, PhD


Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity (CHARM) and Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA) clinical trials.


JAMA Cardiol. 2021;6(4):379-386

## Wild-type transthyretin amyloidosis as a cause

 of heart failure with preserved ejection fractionEsther González-López¹, Maria Gallego-Delgado ${ }^{1}$, Gonzalo Guzzo-Merello ${ }^{1}$, F. Javier de Haro-del Moral ${ }^{2}$, Marta Cobo-Marcos ${ }^{1}$, Carolina Robles ${ }^{1}$, Belén Bornstein ${ }^{3,4,5}$, Clara Salas ${ }^{6}$, Enrique Lara-Pezzi ${ }^{7}$, Luis Alonso-Pulpon ${ }^{1}$, and Pablo Garcia-Pavia ${ }^{1,7 *}$


Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study

(2) Actionability?


## Variant Status



## Distribution of Variants



— Variant Positive —— Variant Negative


Gigli, M. et al. J Am Coll Cardiol. 2019;74(11):1480-90.

## 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy

The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA).

An ICD should be considered in patients with DCM and a confirmed disease-causing LMNA mutation and clinical risk factors. ${ }^{\text {d }}$

## 2015 ESC Guidelines for the management

 of patients with ventricular arrhythmias and the prevention of sudden cardiac deathThe Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)

## Importance of genotype for risk stratification

 in arrhythmogenic right ventricular cardiomyopathy using the 2019 ARVC risk calculator

Eur Heart J. 2022 Aug 21;43(32):3053-3067. doi: 10.1093/eurheartj/ehac235.

## The NEW ENGLAND JOURNAL of MEDICINE

## Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy

Mathew S. Maurer, M.D., Jeffrey H. Schwartz, Ph.D., Balarama Gundapaneni, M.S., Perry M. Elliott, M.D., Giampaolo Merlini, M.D., Ph.D., Marcia Waddington-Cruz, M.D., Arnt V. Kristen, M.D., Martha Grogan, M.D., Ronald Witteles, M.D., Thibaud Damy, M.D., Ph.D., Brian M. Drachman, M.D., Sanjiv J. Shah, M.D., Mazen Hanna, M.D., Daniel P. Judge, M.D., Alexandra I. Barsdorf, Ph.D., Peter Huber, R.Ph., Terrell A. Patterson, Ph.D., Steven Riley, Pharm.D., Ph.D., Jennifer Schumacher, Ph.D., Michelle Stewart, Ph.D., Marla B. Sultan, M.D., M.B.A., and Claudio Rapezzi, M.D., for the ATTR-ACT Study Investigators*

N Engl J Med 2018;379:1007-16.


No. at Risk (cumulative no. of events)
Pooled tafamidis $\quad 264(0) \quad 259(5) 252(12) 244(20) 235(29) 222(42) 216(48) 209(55) 200(64) 193(71) \quad 99(78) \quad 0(78)$
Placebo

$$
177(0) \quad 173(4) \quad 171(6) \quad 163(14) 161(16) 150(27) 141(36) 131(46) 118(59) 113(64) 51(75) \quad 0(76)
$$

N Engl J Med 2018;379:1007-16

Amyloid heart disease: genetics translated into disease-modifying therapy
Brett W Sperry, ${ }^{1}$ W. H. Wilson Tang ${ }^{2,3}$


Sperry BW, Tang WHW. Heart 2017;103:812-817.

Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial
lacopo Olivotto, Artur Oreziak, Roberto Barriales-Villa, Theodore P Abraham, Ahmad Masri, Pablo Garcia-Pavia, Sara Saberi, Neal K Lakdawala, Matthew TWheeler, Anjali Owens, Milos Kubanek, Wojciech Wojakowski, Morten K Jensen, Juan Gimeno-Blanes, Kia Afshar, Jonathan Myers, Sheila M Hegde, Scott D Solomon, Amy S Sehnert, David Zhang, Wanying Li, Mondira Bhattacharya, Jay M Edelberg, Cynthia Burstein Waldman, Steven JLester, Andrew Wang, Carolyn Y Ho, Daniel Jacoby, on behalf of EXPLORER-HCM study investigators


## Frontiers: New Armoury

- B-blockers
- RAAS inhibitors
- Statins
- Vasodilators
- Antiplatelets
- Anticoagulants
- Devices



## Different Facets of Personal/Precision Medicine



"If it were not for the great variability among individuals, medicine might as well be a science and not an art"

## Sir William Osler, 1892



- The new ESC Council on Cardiovascular Genomics is a multistakeholder body whose mission to encourage research, education and the sharing of genomic knowledge.



[^0]:    European Heart Journal - Cardiovascular Imaging (2022) 23, 465-475

